Ordinal Ranks on Weakly Compact and Rosenthal Operators
نویسنده
چکیده
Using the Schreier families (Sξ)ξ<ω1 , we define subclasses of weakly compact and Rosenthal operators between two Banach spaces. These subclasses give rise to ordinal ranks defined on each ideal. We prove several results concerning the analytic properties of this rank and give examples of spaces on which the ranks are bounded and unbounded.
منابع مشابه
Some properties of b-weakly compact operators on Banach lattices
In this paper we give some necessary and sufficient conditions for which each Banach lattice is space and we study some properties of b-weakly compact operators from a Banach lattice into a Banach space . We show that every weakly compact operator from a Banach lattice into a Banach space is b-weakly compact and give a counterexample which shows that the inverse is not true but we prove ...
متن کاملCompact weighted Frobenius-Perron operators and their spectra
In this note we characterize the compact weighted Frobenius-Perron operator $p$ on $L^1(Sigma)$ and determine their spectra. We also show that every weakly compact weighted Frobenius-Perron operator on $L^1(Sigma)$ is compact.
متن کاملOrder Almost Dunford-Pettis Operators on Banach Lattices
By introducing the concepts of order almost Dunford-Pettis and almost weakly limited operators in Banach lattices, we give some properties of them related to some well known classes of operators, such as, order weakly compact, order Dunford-Pettis, weak and almost Dunford- Pettis and weakly limited operators. Then, we characterize Banach lat- tices E and F on which each operator from E into F t...
متن کاملSeveral New Characterizations of Banach Spaces Containing
Several new characterizations of Banach spaces containing a subspace isomorphic to , are obtained. These are applied to the question of when 1 embeds in the injective tensor product of two Banach spaces. Notations and terminology. All Banach spaces are taken as infinite dimensional, “subspace” means “closed linear subspace,” “operator” means “bounded linear operator.” If W is a subset of a Bana...
متن کاملLinear operators of Banach spaces with range in Lipschitz algebras
In this paper, a complete description concerning linear operators of Banach spaces with range in Lipschitz algebras $lip_al(X)$ is provided. Necessary and sufficient conditions are established to ensure boundedness and (weak) compactness of these operators. Finally, a lower bound for the essential norm of such operators is obtained.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012